اثر اسپرایمینگ بر شکست خفگی و مؤلفه‌های تنزیگی بذر لاله واژگون

(Fritillaria imperialis)

Effect of Osmopriming on Dormancy Break and Germination Parameters of Fritillaria imperialis Seed

زيدب آقاباباطرد، پژمان طهماسبی، و علی عباسی سروری

چکیده

لآله واژگون یکی از گونه‌های با ارزش دارویی و بومی گردد که در منطقه زاگرس است. با توجه به اینکه، تنزیگی و استرکت بارگاه در شرایط طبیعی مشکل است. پرینتینگ بر می‌تواند قابلیت تنزیگی در این گیاه را افزایش دهد. این پژوهش در دو آزمایش چندگانه طراحی شد. آزمایش اول با هدف اثر اسپرایمینگ بر شکست خفگی بذر این گیاه به صورت فاکتور و در قالب چهار مدل تصادفی در چهار تکرار انجام شد. نتایج آزمایش جدایگری و نکات زنجیرهی نوبت بعد Диورسته قرار گرفت. فاکتورهای آزمایشی شامل مدت زمان سرمایه‌گذاری (4 و 8 هفته)، تیپ سرمایه‌ای اعمال شده و هر دو در طول 26 و 28 ساعت، با مدت 12 ساعت در طول 8 هفته سرمایه‌بر در درصد تنزیگی، طول تیپ سرمایه، و شاخص بینی به پردازش مکانیکی که در انتهای نیاز سرگرمی‌ای می‌گذارد در اثر انجام بر روی شکست بهبود ویژگی تنزیگی بعد از شکست خفگی آنجام شد. نتیجه‌ها نشان داد که پرینتینگ و مدت زمان پرینتینگ بر روی گل‌های ویژگی مورد بررسی مشابهی، نماینده و موجب بهبود این ویژگی‌ها شد.

واژگون کلیدی: اسپرایمینگ، تنزیگی، شکست خواب، لآله واژگون

مقدمه

کیفیت گل‌های لآله واژگون با نام علمی Fritillaria imperialis، یکی از نوآوری‌های ادبی هفته‌ای، گل‌های خاص و بومی ایران است. بر اساس این گفته این گیاه در ایران کوه‌های بختیاری، پاسگاه، چهارشیرین، اشترانکوه لرستان، آذربایجان و کردستان از جمله زیباترین گل‌های کشور ایران محسوس می‌شود. این قابلیت را ارتفاع این گیاه تا 2000 متر از سطح دریا است. عمر لآله واژگون کوتاه است، در باره هر لاله واژگون کوتاه از کشورهای آلمان، آمریکا، بلژیک و هلند توجه ویژه‌ای به آن دارند. لآله واژگون بیشتر به دلیل کلی نهایی که آن کشت می‌شود و این قابلیت را دارد که به عنوان گل شاخه‌بریده و یا گل‌های دلتا زبانی به‌نام نطنز، همه‌شان دمنش شود (20). در طی سنتی و مطالعه‌های بیانی، این گیاه برای بررسی بیماری‌های مختلف از جمله جلودر، سرطان و آسیب‌های آسیب‌پذیری در هنگام گل‌گذاری و پدیده‌های مسئول پروبیوتیک زندگی می‌گردد.

متأسفانه طی سال‌های اخیر جمعیت لآله واژگون به نظر می‌رسد به‌جز چندان، نیاز به تحقیق و مطالعه در مورد نبات‌های گفته شده است (22). لآله واژگون را

* Liliaceae 3-3

تاریخ پذیرش: 20/98/787/14

پژمان تاحمی‌سادی و دانشگاه یزد

پژمان تاحمی‌سادی، پژمان طهماسبی، و علی عباسی سروری (1395)
می‌توان توسط سوخت، بذر و کشت بافت آنزیم‌دار داد (5). بکیس، این گیاه توسط بذر، به‌وسیله تعداد زیاد، نکه‌بردار آسیا و پانتاسیل پراکنش بیشتر نسبت به سوخت آسیا دارد. از محدودیت‌های بذر این گیاه می‌توان به وجود نخستی، مشکل تنسگی و استقرار در شرایط طبیعی اشاره نمود. بنابراین می‌توان با انتقال و کشت بذر محدوده گسترش آن را افزایش باد که اولین قدم در این راه یک پیکر تیمار‌های متنوع جهت تسنیم‌بندی است.
نتیجه‌گیری و استقرار سنسور سنجش رشده گیاه به شمار می‌رود و همگون‌سازی آن در پروتئین و زنده‌برداری
دو برای می‌شود (1): پرپرینگ بذر به عنوان یک روش ساده برای تولید گیاهان در شرایط محیطی مختلف توسه یافت است. پرپرینگ بذر یک میکرو‌بقیه از کتالیسیستیک که اکثر جذب آب به روش محیط‌های اوپلی نتیجه‌گیری از آن می‌رهند. اما از خروجی رشته‌های از پتوت‌های بذر، به‌طور معمول بذرها برای مدت کوتاه قبل از کشت خشک می‌شوند (25). پرپرینگ باعث افزایش درصد تصنیف، افزایش سرعت تنسگی، کاهش نفتی‌سازی و
شردی، انزیم‌های کننده، تنسگی در تنش‌های محیطی و کاهش میزان مدت تغییر می‌شود (18، 22، 26، 50). امروزه
تکنیک‌های مختلف پرپرینگ شامل هیدروپرینگ، آسمورپرینگ، پرپرینگ هیدرومونی، بی‌ریپرینگ و مانندی
پرپرینگ توسه به‌پایه‌اند (16، 27). مطالعه‌های علمی نشان می‌دهد انورپرینگ یکی از روش‌های اصلی
پرپرینگ نخستین که در این روش بذرها در محلول با پنالتی کمی تقویت‌کننده آب‌داری به همراه تهیه خیس‌دانه
می‌شوند (20). امروزه در اسپرینگ‌های به‌طور معمول از پتي‌های گلایکول (PEG) استفاده می‌شود. این ماده
یک ترکب بی‌اثر با وزن مولکولی بالا و اثرات سودمندی بر روی بذر باریک از گونه‌های می‌گذارد (19). ساخت RNA بی‌رنده، تقویت بافت‌های و همچنین به‌وسیله
تماشا و غشای سیتوپلماوی هما مه‌سنت (34، 35). مزیت‌ها و عیب‌های پرپرینگ به کنون گیاه، سرعتی رشد
گیاهی غلظت‌ها پاتانتکلین اسمزی، طول دوره پرپرینگ، درجه حرارت و خشکی بذر بستگی دارد (34، 35).
تیروز و سونوژی (34) برای تأثیر اسپرینگ‌های با پاتانتکلین (31، 32، 33) و
دوره‌های مختلف پرپرینگ با PEG (8، 10 و 10 روز) روی بذر کن تغییر
که بیشترین تنسگی، سرعت تنسگی، طول رشته‌پری و ساختار کاپیلاری بلند بهتر و زیست‌توده ریشه در تیمار
15/15 مکاپسکال به مدت 6 روز مشاهده شد. همچنین بذرهای که به صورت مرطوب کشت شدند در تمامی ویژگی‌ها
عمدلیک بابرکری داشتند. می و همکاران (27) یافته داشتند که تیمارهای پرپرینگ باعث بهبود تنسگی می‌شود.
همچنین این پژوهشگرها بیان نمودند پرپرینگ‌ها غلیظ‌تر سپرایکسید دیسمولان و پراکسید را افزایش و تجمع
رادیکال‌های آزاد و آسیب سیستم غشای باخته‌های را کاهش می‌دهد. واریو و فرنداندو (29) در پژوهش که پرپرینگ به
صورت مصنوعی درصد و سرعت تنسگی را افزایش داد. اسانس و فریز زاده (9) گزارش دادند که تیمارهای
پرپرینگ در گاوساپور درصد تنسگی شاخص زمان تنسگی شاخص پرپرینگ از تیمارهای وانیانی گیاهی و زنگ
کیفی‌های و قطع گیاهی را بهبود بخشید. آشناپور و همکاران (2) یافته داشتند تیمارهای پرپرینگ درصد و
Agropyron elongatum (به نظر می‌رسد تیمارهای پرپرینگ بتوانند موجب افزایش یکپارچه‌های تنسگی در بذر لاله و آزکون شوند. به
منظور این پژوهش با هدف بررسی تأثیر غلظت‌های مختلف PEG و مدت زمان پرپرینگ بر ویژگی‌های تنسگی و
رشد گیاهی به بذر لاله و آزکون اجرای شد.

مواد و روش‌ها
به منظور بررسی اثر اسپرینگ‌های به غلظت مختلف و مؤثرهای تنسگی به بذر لاله و آزکون در آزمایش
جداگاه در سال 1392. در آزمایشگاه کشت و تکثیر بذر دانشگاه منابع طبیعی و علوم زیست‌شناسی شهرکرد به

Polyethylene Glycol – 1
اثر آسپرمایپینگ بر شکست خانه‌ها و موثران شعری...
نتیجه‌های تجزیه‌و-اریافت‌های این آزمایش نشان داد که درصد تنзگی بذر لاله وازگون در سطح احتمال ۵٪ از پاتنسل اسپزی اثر گرفت (P<0.05) و تأثیر مدت زمان تیمار بر بهره‌کاری پتاسیل اسپزی و مدت زمان تیمار معنی‌دار نشد. مقایسه میانگین داده‌های تیمار داده‌های بیشترین درصد تنزگی در پاتنسل اسپزی ۱۲-باز تیمار به شکل که از نظر آماری با تیمار شاهد و پتاسیل ۶-بار در یک گروه آماری قرار گرفتند و بین آن‌ها تفاوت معنی‌داری مشاهده نشد. میانگین پتاسیل ۳-۶- ۹- بار کمترین درصد تنزگی را به خود اختصاص دادند (شکل ۱).

با یک گروه تیمار پراپمیک به همراه ۳ هفته سرمایه‌های قابل تثبیت در بین تیمارها حذف شد.

Fig. 1. Effect of osmotic potential on germination percentage of Fritillaria imperialis seed. lower cases show significant level in LSD.

شکل ۱- اثر پتاسیل اسپزی بر درصد تنزگی بذر لاله وازگون. حرک‌های کوبک سطح معمولی بودن در آزمون LSD مستند.
گیاههای (8/98 سانتی‌متر) مربوط به پتانسیل -12 بار 12 ساعت و کمترین آن در تیمار شاده (0/98 سانتی‌متر) بود. مقایسه میانگین داده‌ها نشان داد، تیمارهای -3، -6، -9، -12 بار به مدت 9، 12، 24، 48 ساعت از نظر آماری در یک گروه قرار گرفتند (جدول 1).

شاخص بینه اول
نتیجه‌های تجزیه‌ی واریانس داده‌ها نشان داد، تأثیر تیمارهای مورد بررسی بر شاخص بینه اول لاله و ایلوکون در سطح احتمال 1% معنی‌دار بود (P<0.01). بر اساس مقایسه میانگین داده‌ها، بیشترین شاخص بینه اول در تیمار -12 بار به مدت 12 ساعت مشاهده شد که این مقادیر برابر 0/07 بود و کمترین آن در پتانسیل -6 بار به مدت 48 ساعت 9.24 بود. همچنین تیمار شاده با پتانسیل -3 بار 36 ساعت -6 بار در تامیا زمان‌ها و -12، 24، 48 بار به مدت 36 ساعت اختلاف معنی‌داری نداشت (جدول 1).

شاخص بینه دوم
نتیجه‌های تجزیه واریانس داده‌ها نشان داد، شاخص بینه دوم از پتانسیل اسمری، مدت زمان تیمار و برهمکنش پتانسیل اسمری و مدت زمان تیمار اثر گرفت (P<0.01). بیشترین شاخص بینه دوم مربوط به پتانسیل -12 بار به مدت 12 ساعت به افزایش معنی‌داری در حدود 0/047 نسبت به شاهد شان داد و کمترین آن در تیمار -6 بار به مدت 24 ساعت بست امید. همچنین مقایسه میانگین داده‌ها این آزمایش نشان داد تیمارهای -2 بار 12 ساعت، -6 بار 12، -9 بار 24 و -12 بار 24، 48 و 72 ساعت در یک گروه آماری قرار گرفتند و افزایش معنی‌داری نسبت به شاهد نداشتند (جدول 1).

جدول 1: مقایسه میانگین ویژگی‌های تنگیک و کیفیت‌های بذر لاله و ایلوکون در پتانسیل اسمری و مدت زمان‌های مختلف تیمار.

<table>
<thead>
<tr>
<th>پتانسیل اسمری</th>
<th>مدت زمان تیمار (ساعت)</th>
<th>سرعت تنگیک</th>
<th>طول گیاههای نوزاد</th>
<th>شاخص بینه اول</th>
<th>شاخص بینه دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.75 a †</td>
<td>8.325 abc</td>
<td>6.17 bc</td>
<td>4.58 b</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.44 efg</td>
<td>6.725 fgh</td>
<td>4.24 g</td>
<td>2.54 g</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.91 gh</td>
<td>6.268 g-j</td>
<td>4.46 fg</td>
<td>3.26 efg</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.76 h</td>
<td>6.125 hij</td>
<td>4.19 g</td>
<td>3.23 efg</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.13 fgh</td>
<td>7.068 ef</td>
<td>5.25 def</td>
<td>3.71 c-f</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.84 h</td>
<td>6.543 f-i</td>
<td>4.58 efg</td>
<td>3.32 d-g</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3.61 ef</td>
<td>6.850 fg</td>
<td>5.27 def</td>
<td>3.61 c-f</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.97 cde</td>
<td>6.035 ij</td>
<td>4.53 efg</td>
<td>3.47 def</td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.97 cde</td>
<td>8.390 ab</td>
<td>6.30 bc</td>
<td>4.64 b</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.59 ef</td>
<td>8.172 bcd</td>
<td>5.31 def</td>
<td>3.67 c-f</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3.86 de</td>
<td>6.370 ghi</td>
<td>4.26 g</td>
<td>3.27 efg</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.78 de</td>
<td>7.665 cde</td>
<td>6.28 bc</td>
<td>4.37 bc</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.15 b</td>
<td>8.890 a</td>
<td>7.64 a</td>
<td>5.84 a</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.29 ed</td>
<td>8.453 ab</td>
<td>6.51 b</td>
<td>4.39 bc</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>5.07 b</td>
<td>5.953 ij</td>
<td>4.87 efg</td>
<td>4.16 bcd</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2.78 h</td>
<td>7.580 de</td>
<td>5.43 cde</td>
<td>4.02 b-e</td>
<td></td>
</tr>
<tr>
<td>شاهد</td>
<td></td>
<td></td>
<td></td>
<td>4.56 bc</td>
<td></td>
</tr>
</tbody>
</table>

†Means with the same letters have no significant difference at 5% probability.
‡ در هر ستون میانگین‌های دارای کمیته یک حرف مشترک، اختلاف معنی‌داری در سطح احتمال 5% ندارد.
آزمایش دوم- تأثیر اسموزورایمینک بر بهبود ویژگی‌های تنگزی بذرها بی‌دود خفتهی ناله و ازالگون

درصد تنگزی

نتیجه‌های تجزیه واریانس داده‌های این آزمایش نشان داد درصد تنگزی بذر ناله و ازالگون در سطح احتمال 1% از مدت زمان تیمار و برمکش پتانسیل اسمزی و مدت زمان تیمار اثر گرفت (P<0.01). علاوه بر این اثر پتانسیل اسمزی در سطح احتمال 5% معنی‌دار شد (P<0.05)، بیشترین درصد تنگزی مرتبی به تیمار 12-بار 12 ساعت بود و کمترین درصد تنگزی در تیمار 36-بار 28 ساعت بود. از نظر آماری اختلاف معنی‌داری بین این تیمار و تیمار شاهد مشاهده شد (شکل 2).

شکل 2- برمکش پتانسیل اسمزی و مدت زمان تیمار بر درصد تنگزی بذر ناله و ازالگون. حرف‌های کوچک بینگک معنی‌دار بودن در آزمون LSD مستند.

سرعت تنگزی

بر اساس نتیجه‌های جدول تجزیه واریانس، سرعت تنگزی در سطح احتمال 1% از پتانسیل اسمزی مدت زمان تیمار و برمکش آن اثر گرفت (P<0.01). مقایسه میانگین داده‌ها نشان داد پتانسیل‌های 12-بار و 24-بار به مدت 24 ساعت، بیشترین سرعت تنگزی را به خود اختصاص دادند که به ترتیب افزایش معنی‌داری در حدود 52/68-51/98 نسبت به شاهد داشتند و کمترین مقدار آن در تیمار شاهد مشاهده شد (شکل 3).

شکل 3- برمکش پتانسیل اسمزی و مدت زمان تیمار بر سرعت تنگزی بذر ناله و ازالگون. حرف‌های کوچک بینگک معنی‌دار بودن در آزمون LSD مستند.

70
طول گیاهچه

بر اساس آزمایش‌های تجربی و اریانس، طول گیاهچه در بذر لاله و اژگون در سطح احتمال 1% از پاتنیل اسمزی، مدت زمان تیمار و برهمکنش آنها اثر گرفت (P<0.01). مقایسه میانگین طول گیاهچه نشان داد، تیمار 12-بار 17 ساعت افزایش معنی‌داری نسبت به سایر تیمارها داشته که نسبت افزایش طول گیاهچه این تیمار به شاهد 20/85 بود و با تیمار 2-بار 12 ساعت اختلاف معنی‌داری نداشت. همچنین تیمار شاهد، پاتنیل 12-بار 38 با 24 ساعت از نظر آماری در یک گروه قرار گرفتند و کمترین طول گیاهچه را به خود اختصاص دادند (شكل 3).

شکل 4- برهمکنش پاتنیل اسمزی و مدت زمان تیمار بر طول گیاهچه بذر لاله و اژگون. خرکهای کوچک بیانگر معنی‌دار بودن در آزمون LSD هستند.

شناخت برنجهای
نیتیجه‌های تجربی و اریانس داده‌ها نشان داد، تاثیر تیمارهای مورد بررسی بر شاخص بنیه اول بذر لاله و اژگون در سطح احتمال 1% معنی‌دار بود (P<0.01). نتیجه‌های مقایسه میانگین داده‌ها نشان داد، پشتیبانی از طبقه‌بندی به شاهد داشت و کمترین مقدار آن (23/3) مربوط به تیمار 12-بار 38 ساعت بود. اختلاف تیمار 12-بار 38 ساعت و تیمار شاهد از نظر آماری معنی‌دار نبود (شكل 5).

شکل 5- برهمکنش پاتنیل اسمزی و مدت زمان تیمار بر شاخص بنیه اول بذر لاله و اژگون. خرکهای کوچک بیانگر معنی‌دار بودن در آزمون LSD هستند.
شناخت بینه دوم
بر اساس نتیجه‌های جدول تجزیه واریانس، شناخت بینه دوم بذر لاله وازگون در سطح احتمال ۱٪ از پتاسیل اسمرزی، مدت زمان پرایمینگ و برهمکنش آنها اثر گرفته (۱/۰). نتیجه‌های مقایسه میانگین داده‌های این آزمایش نشان داده بود که کاهش شناخت بینه دوم بذر لاله وازگون با کاهش مقدار زمان نیاز می‌باشد (شکل ۶).

Fig. 6. Osmotic potential and duration interaction effect on vigor index II of Fritillaria imperialis seed. Lower case letters show significant level in LSD.

شکل ۶- برهمکنش پتاسیل اسمرزی و مدت زمان تیمار بر شناخت بینه دوم بذر لاله وازگون. میانگین‌های دارای هر فرآیند کروکه مشابه اختلاف معنی‌دار بر اساس آزمون LSD تدارند.

بحث
نتیجه‌های این آزمایش نشان داد، اسپورپرایمینگ قبل از تیمار سرمایه‌ای به طور معنی‌داری، ویژگی‌های مورد بررسی را زیر تأثیر قرار داد. اما در کاهش نیاز سرمایه‌ای بذر لاله وازگون مؤثر نبود. مشاهده‌ها پس از ۵ ماه، نتیجه‌نگاران به دلیل واکنش در حال نیاز داشت. این نتیجه‌ها در آزمون همراه سرمایه‌های مرطوب می‌تواند زمان رسیدن بذر تازه را در پذیرفتن کاهش Chenopodium bonus-henricus به دهد.

در انجام روش پرایمینگ بعد از شکست خشکی، خشک کردن پس از پرایمینگ بر تنگی بذر لاله وازگون تأثیر منفی به دنبال داشته و نتیجه‌نگاران به دلیل واکنش مشاهده شد. این نتیجه نیز توسط پیروی‌های دیگر در گونه‌های مختلف غارش شده است. به طوری که آزمایش‌های مکدونالد (۱۲) نشان دادند که اسپورپرایمینگ بذر سویا بدون خشک کردن باعث انزیام ویژگی‌های تنگی می‌شود. هنگامی که بذرها بذرهای متفاوت در جریان هوا خشک می‌شوند، کارایی بذر به علت نشان داده شده (در اثر خشک کردن) کاهش می‌یابد. بودس ورس و بیولی (۱۵) در یافته‌های که خشک کردن در هوا آزاد، کاهش افزایش پرایمینگ را در مواد بذر گونه‌های حشرات خوراکی جو، گندم و سویا به دنبال داشته است. به طوری که خشک کردن به مدت طولانی جهش کاهش بیشتر بذرهای پرایمینگ شده است. علاوه بر این، تیمارهای پرایمینگ با تجربه موادهای غذایی بذر، موجب نتیجه‌گیری این ماده‌ها به محور روانی می‌شود. اما با خشک کردن بذر، امکان استفاده ماده‌های تجزیه شده توسط بروز وجود ندارد. در نتیجه این ماده‌ها نشته‌کرده و
اثر افراز‌پردازی پر بی‌کنش که خلق و مؤلفه‌های ...

با ایجاد پنالتی منفی کاهش تنشگی بذر را به نفع خود افزایش داد. همچنین فاروق و همکاران (22) گزارش کردند که به‌هم‌بندی از افزایش آفت‌کششی به وسیله ایون‌های نیتراتسیلسون با اعمال تیمار دوباره - خشک کردن کاهش می‌یابد. در نتیجه در این آزمایش بذرها به صورت سطحی خشک شدند. فاروق و همکاران (23) گزارش نمودند که خشک کردن سطحی به طور معنی‌داری فعالیت آلفا آمایلا، قند‌های محلول و فعالیت دیه‌رژئازا را در مقایسه با شاهد افزایش داده است.

در بررسی حاضر پریامینگ در دو آزمایش به‌طور معنی‌داری موجب افزایش درصد و سرعت تنشگی در مقایسه با شاهد شد. پریامینگ موجب افزایش آنتی‌اکسیدان‌ها تئوری گلوتاتیون و آکسوپرات به بذر می‌شود که این ماده‌ها پرپاپیدلی‌سیمور تأمین می‌کنند. به نتیجه برای افزایش و تنشگی بذر در بذر می‌شود. همچنین عارف و همکاران (24) گزارش دادند که کاهش یک‌درصدی از سبزیگردن بذر از تنشگی به‌وسیله پریامینگ شروع می‌شود. بنابراین، سبزیگردن بذرها (پرپاپیدلی‌سیمور) و طول دوره پریامینگ می‌گردد. آن‌ها گزارش دادند که بذرها ذخیره‌شده در پهنای 5-7 و مدت زمان 6 ساعت شیب بیشتری داشتند. از Podophyllum hexandrum , Leymus chiniensis , Bromus inermis , Berberis aristata و Festuca 0.31 (25) و 0.37 (26) و 0.37 (27) مربوط به سرعت تنشگی و افزایش درصد و سرعت تنشگی شد که با یافته‌های این پژوهش مطابقت دارد.

به‌نظر از این آزمایش نشان داد که پریامینگ به طور معنی‌داری طول‌گیاهی را در بذر لاله و ازکان زیر تأثیر قرار گرفت. هم‌گون و همکاران (24) گزارش نمودند که پریامینگ مقاومت آنتی‌اکسیدانی را به رشد طولی کاهش می‌دهد و آن‌ها بذر باعث تنشگی سریع بذر می‌شود که در نهایت به افزایش طول ساقه و ریشه و گیاهی‌های مناسب ایجاد می‌کند. باربر و همکاران (25) بیان نمودند که در رشد ساقه بذر و گیاه پریامینگ موجب حاصل از بذرها پرپاپیدلی‌سیمور شده و در نتیجه بود. بنابراین، چنین می‌توان گفت که پریامینگ بکس تأثیر فراوان‌های متابولیکی را در بذر ایجاد می‌کند که جمعی از سه‌شیبی‌ترین علاوه به سریع سریع تنشگی موجب می‌شود. بخشی از آن استوارتر بوده و زیست‌گاه‌ها می‌باشد. نارین‌خاندی و پیرارادناتل (26) در بررسی تیمارهای پریامینگ از کاهش پرپاپیدلی‌سیمور بذر و استقرار محصول آفت‌هایی که نشان دادند که تیمارهای اسپرم‌پردازی طول ریشه، طول ساقه، سرعت تنشگی، درصد تنشگی و وزن خشک گیاهی به ترتیب کاهش نیافته و طول‌گیاهی را بهبود بخشیده‌اند.

شاخه بینه اول و دوم نیز از تیمارهای مورد بررسی اثر گرفتند. شاخه بینه اول حاصل ضرب طول‌گیاهی در درصد تنشگی بذر می‌باشد. و معمولاً نشان دهنده سلیقه افراز در بذر نیست. پلی‌اکسی‌لین گلایکوکون. تنشگی و شاخه بینه بذر افراز در افزایش در درصد تنشگی و شاخه بینه به بدل تحرک ماده‌های ذخیره‌داری، عفون‌سازی و ساخت جسد بینه که افزایش افراز در درصد تنشگی و شاخه بینه به بدل تحرک ماده‌های ذخیره‌داری، عفون‌سازی و ساخت جسد بینه که افزایش افراز بالادست می‌باشد. همچنین لی و کیم (25) یافته‌ها نمودند که افراز فعالیت آلفا آمایلا در DNA افراز ساخت RNA

۷۳
در کل سرماده‌ه مربوط به همراه اسپروپراپاينگ تأثیر مثبتی بر بذر لاله وازگون به همراه داشت. خان (33) عناوین نمود که استراتیفیکاسیون می‌تواند به همراه اسپروپراپاينگ برای بهبود تختگی بذر گونه‌های مختلف به کاربرده‌تو شود. تیمار سرماده‌ه خفگی بذر را از بین ی مرد، همچنان‌که تیمار اسپروپراپاينگ بصورت کامی مدت تختگی عمل می‌کند.

نتیجه‌گیری
نتیجه‌ها نشان داد، تیمار اسپروپراپاينگ در غلظت 12-15 په به مدت 12 ساعت پس از 8 هفته نتیجه‌های مثبتی در ویژگی‌های مورد بررسی به همراه داشت. در آزمایش پراپاينگ بذر با PEG بعد از شکست خفگی، نتیجه‌ها حاکی از آن بود که پرایم کردن نه تنها ویژگی‌های تختگی را بهبود بخشید بلکه با امکان توسعه طولی ریشه‌چه، امکان استقرار بهتر این گیاه را فراهم نمود. همچنین افزایش شاخص بینه اول و شاخص بینه دوم در تیمار 12-15 بذر 12 ساعت مشاهده شد.

References
1. انصاري، ک، ع. کازانچيان، م، صابری، ع. بیرگفتن و. جاجرمی، 1389. بررسی روند سنگ شدن و عوامل مؤثر بر استقرار گیاهان هفت گونه کندیمان پایای فصل سرد در بجنورد (منطقه سیستان) مجله علمی پژوهشی مرتع 4، 56-52.
2. آذری‌نیا، م، عباسی، و. طناتی، 1388. ارزیابی و تعیین بهترین تیمارهای هیدروپراپاينگ و اسپروپراپاينگ بر ویژگی‌های جوانه‌زایی اگروپاپون ایکتاموم (Agropyron elongatum)، مجله منابع طبیعی ایران. 444-434.
3. توکل‌افشار، ر، ع. عباسی، سارکی، و. امامی‌پور، 1378. فناوری بذر و مبانی زمستان در شناختی آن. انتشارات دانشگاه تهران.
4. شاکری، ب، و. دیاتی، تیلکی، م، طبری، و. بهرمی، 1389. اثر تیمارهای پراپاينگ بر مقاومت به بثوری به مرحله جوانه‌زایی و رشد اولیه. فصلنامه علمی-پژوهشی تحقیقات زنبیلی و اصلاح گیاهان مرتعی و جنگلی ایران. 18، 318-328.
5. کریمی، م، 1388. انجلس رسنتیه‌های دارویی. انتشارات آیوکس.
6. منیش، ح. 1390. داژیالعالکاتریک و گیاهان. جلد سوم: گل و گیاهان زینتی پایز دار، شیدان تهران.
7. مکنزی، ک، ح. 1390. گل، چنین چهارشیپی و نظیر. 1390. بررسی کاربرد سالسیلیک اسید به منظور بهبود کیامگی‌های حاصل از بذر گیاه داروی سیاه دانه (Nigella sativa L.). دستورالعمل نوین در زراعت 3-1.
Effect of osmopriming on Dormancy Break and Germination Parameters of *Fritillaria imperialis* Seed

Z. Aghababanejad, P. Tahmasebi* and A. Abbasi Surki

Fritillaria imperialis is one of the valuable medicinal and ecotourism species in Zagros region. While germination and establishment of this plant are problematic, seed priming may increase germination capacity of this plant. This research was designed in two separate experiments. First experiment was done to find the effects of osmopriming on dormancy break of seed as factorial in randomized complete block design with 4 replicate. Experimental factors included duration of stratification (4 and 8 weeks), osmotic potential created with PEG (-3, -6, -9 and -12 bar), and duration of priming (12, 24, 36 and 48 hours). The results showed that potential of -12 bar during 12h and 8 weeks stratification affected germination percentage, germination rate, length of seedling and vigor index (I and II) significantly but were not effective in reducing the need for stratification. The second experiment was conducted to study effects of osmotic potential and priming duration on improving germination traits after breaking dormancy. According to data analysis, effect of potential and priming duration on all of the mentioned traits were significant and improved.

Key Words: Dormancy break, Germination, *Fritillaria imperialis*, Osmoprimin.

1 M.Sc. Student and Assistant Professor of Rangeland management, College of Natural Resources and Earth Science and Assistant Professor of Agronomy, College of Agriculture, Shahrekord University, Shahrekord, I.R.Iran, respectively.

* Corresponding author, Email: (pejman.tahmasebi@nres.sku.ac.ir)