بهینه‌سازی کشت درون‌شیه‌ای پسته‌بادامی ریز زرنده با استفاده از جوانه‌های گیاهی

Optimizing in vitro Culture of Pistacia vera ‘Badami-Riz-Zarand’ Using Axillary Buds

چکیده

پسته بادامی ریز زرنده بهدلیل حساسیت کم به بیماری گموز، تحمیل شوری و سازگاری با پیوندک رقیم‌های تجاری به‌عنوان پایه در باقی‌مانده پسته ایران استفاده می‌شود. در این پژوهش اثر میوهیت کشت (MS) و غلب رنگ غلب کشت (DKW) در دو اثر درست شد. پیش‌ترین رشد بیشتری نسبت به کشت دیگری از MS و غلب رنگ غلب کشت (DKW) به‌دست آمد. افزودن ترکیب‌های آنتی‌اکسیدان و زغال فعال تأثیر معنی داری بر مقدار استقرار جوانه‌های نشان داد. بیشترین شمار نوسازه‌ها (5) در عدد 64 میلی‌گرم در لیتر بین‌لزدل‌دان (BA) (HA) حاوی 1 میلی‌گرم در لیتر بین‌لزدل‌دان و کشت در محیط کشت DKW بیشتر بود (PI/84 تا 5 سانتی‌متر). در مرحله درون‌شیه‌ای، میوهیت کشت نیم‌غلظته در کشت MS حاوی 3 میلی‌گرم در لیتر بین‌لزدل‌دان (BA) (IBA/W50) با 1 میلی‌گرم در لیتر نفتالین استیکسید (NAA) (WE376) شمار ریشه در هر پیوند (0.9) با بالاترین مقدار رشد ریشه‌ای (WE376 درصد) پس از 4 هفته از زمان کشت بیش‌تری پیدا شد.

واژه‌های کلیدی: پسته، بادامی، نوسازه‌ها، تجانس، استقرار.

مقدمه

پسته بادامی دوباره و خزن‌دار از تیره پسته‌سانان (Anacardiaceae) و جنس Pistacia می‌باشد که به‌عنوان یک محصول محصول پسته‌بادامی نگه‌داری شده و مهم‌ترین جایگاه خاصی را در بین درونی‌شیه‌ای کشاورزی دارد و بخش عمده‌ای از صادرات غنی ایران را تشکیل می‌دهد. از مهم‌ترین ناخالصی‌های تشکیل‌دهنده پسته بادامی ریز زرنده به‌کار گرفته شده است (5) پسته بادامی ریز زرنده کیکی از پایه‌های مورد استفاده در باقی‌مانده پسته ایران می‌باشد. بر اساس گزارش‌های موجود، بیشتر رقم‌های رسته‌ای و کمتری به سبب ناشناخته و هویت‌پذیری نسبت به به‌کار گرفته شده (Psophotro coitus, Psophotro citrophotro) رقم‌های رسته‌ای و کمتری به سبب ناشناخته و هویت‌پذیری نسبت به به‌کار گرفته شده (Psophotro coitus, Psophotro citrophotro) رقم‌های رسته‌ای و کمتری به سبب ناشناخته و هویت‌پذیری نسبت به به‌کار گرفته شده (Psophotro coitus, Psophotro citrophotro) رقم‌های رسته‌ای و کمتری به سبب ناشناخته و هویت‌پذیری نسبت به به‌کار گرفته شده (Psophotro coitus, Psophotro citrophotro) رقم‌های رسته‌ای و کمتری به سبب ناشناخته و هویت‌پذیری نسبت به به‌کار گرفته شده (Psophotro coitus, Psophotro citrophotro) رقم‌های رسته‌ای و کمتری به سبب ناشناخته و هویت‌پذیری نسبت به به‌کار گرفته شده (Psophotro coitus, Psophotro citrophotro) رقم‌های رسته‌ای و کمتری به سبب ناشناخته و هویت‌پذیری نسبت به به‌کار گرفته شده (Psophotro coitus, Psophotro citrophotro) رقم‌های رسته‌ای و کمتری به سبب NAA/W476 پیوندی و اکسیدهای مختلف پسته بادامی، سرخس، آناتاکس، و به بر اثر قبیل فوکچی او و احتمالاً در یک آزمایش ساختمان داد که پسته بادامی ریز زرنده دارای بیش‌ترین مقدار رشد اولیه بسیاری و کم‌گرازی و گیرنده‌ی خوب با پیوندک رقم‌های مختلف و اندازه‌سایه‌ساز مناسب بعد از انگیزه کننده‌ی پیوندی (WE376) افزون بر این، استفاده از پیوندی NAA/W476
Driver, Kunihiko, Walnut (Benzyl adenine (BA))
Munehide and Shungo (Driver-Kuniyuki. Walnut (Benzyl adenine (BA)))
در مرحله استقرار ريزونمونها، محيط کشت‌های پایه و گل لentarین (DAK) رشد مثبتی نداشتند. در محیط MS و DKW غلظت (DAK) در دو سطح 10 و 20 میلی‌گرم در لیتر (یری) حساسیت‌ها را در کاب (PVP) و تاکنوازی کربنیک بود. در کاب (PVP) و پائین‌ترین مقدار استقرار ريزونمونها 10 گرم در لیتر باشد. پایه اکسیدان (PVP) در ناحیه میکرو‌کرات در کاب گزارش داده شد. پایه اکسیدان (PVP) در ناحیه میکرو‌کرات در کاب گزارش داده شد.

نتایج و بحث

بر اساس نتیجه‌های مقایسه میانگین‌ها بین محیط کشت‌های مختلف از نظر مقدار استقرار ريزونمونها نتایج معنی‌داری وجود داشت به‌طوری که بیشترین درصد جوانه‌ای رشد یافته مربوط به محیط دوی 1/2 MS و 1/2 DKW (دو دسی‌متری) در کاب (PVP) می‌باشد. در کاب (PVP) و پایین‌ترین مقدار استقرار ريزونمونها 10 گرم در لیتر باشد. پایه اکسیدان (PVP) در ناحیه میکرو‌کرات در کاب گزارش داده شد.

<table>
<thead>
<tr>
<th>a-Naphthalene acetic acid (NAA)</th>
<th>Polyvinylpyrrolidone (PVP)</th>
<th>Gibberellic acid (GA3)</th>
<th>Indolebutyric acid (IBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

371
استقرار جوانه‌های بالگر گردو از آنتی‌اکسیدان‌های اسکوربیک اسید و PVP به ترتیب در غلظت‌های 100 و 250 میلی‌گرم در لیتر استفاده گردید و با مشاهده ترکیب‌های عنوان‌نامه بهبود استقرار جوانه‌ها بود. همچنین، Li و همکاران (19) از غلظت‌های متفاوت در استقرار جوانه‌های گو نه‌ای چنین پژوهش (P. Chinensis) استفاده کردند و غلظت 372/0 درصد را برای مهار قوه‌های سهندی و یه‌پوسته رشد ریزی‌مایه‌ها مؤثر دانستند. در واقع وجود آنتی‌اکسیدان‌های در رنگ نمونه‌های که ترکیب‌های عنوان‌نامه‌ای فنولی آن‌ها یک جزء از مهار رشد ریزی‌مایه‌ها لویه شده است. این در سیستم‌ها که در روشی‌های استقرار و رشد جوانه‌ها مؤثر است اما در ریزی‌مایه‌ها که دارای ترکیب‌های عنوان‌نامه‌ای کمی هستند. تأثیر منفی بر شاخص‌های رشد دانه‌ها در مقایسه می احتیاط‌های کشت می‌شود.

جدول 1- اثر ترکیب‌های می‌بیوهای کشت بر استقرار ریزی‌مایه‌های جوانه‌جاتی پسته بادامی رز زنده.

<table>
<thead>
<tr>
<th>می‌بیوهای کشت</th>
<th>ترکیب‌های افزوده شده</th>
<th>استقرار جوانه‌های رشد شده (%</th>
<th>روز تا شروع رشد</th>
<th>طول ساقه بهترین نوک</th>
<th>شمار برگ در نوک لغو</th>
<th>شماره شاخه‌های جوانه‌جاتی پسته بادامی رز زنده</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>2gL-1 AC+0.5mgL-1 GA</td>
<td>35±9.01b</td>
<td>16.25ab</td>
<td>2.84ab</td>
<td>5.25ab</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>2gL-1 AC</td>
<td>10±11.54abc</td>
<td>15.00bc</td>
<td>2.05b</td>
<td>2.00d</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>0.5mgL-1 GA</td>
<td>27.58±17.1abc</td>
<td>17.37ab</td>
<td>3.44a</td>
<td>4.66ab</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>-</td>
<td>12.5±12.7abc</td>
<td>16.25abc</td>
<td>2.32b</td>
<td>1.33d</td>
<td></td>
</tr>
<tr>
<td>DKW</td>
<td>AN</td>
<td>37.5±9.1bc</td>
<td>17.50b</td>
<td>2.83ab</td>
<td>4.66ab</td>
<td></td>
</tr>
<tr>
<td>DKW</td>
<td>PVP</td>
<td>11±5.91bc</td>
<td>10.33a</td>
<td>1.10c</td>
<td>3.00a</td>
<td></td>
</tr>
<tr>
<td>DKW</td>
<td>-</td>
<td>50±19.27bc</td>
<td>13.20b</td>
<td>2.83b</td>
<td>4.00bc</td>
<td></td>
</tr>
<tr>
<td>1/2DKW</td>
<td>AN</td>
<td>75±16.68b</td>
<td>15.16abc</td>
<td>2.80b</td>
<td>3.83c</td>
<td></td>
</tr>
<tr>
<td>1/2DKW</td>
<td>100mgL-1 PVP</td>
<td>56±19.11ab</td>
<td>13.33abc</td>
<td>2.05b</td>
<td>2.87d</td>
<td></td>
</tr>
<tr>
<td>1/2DKW</td>
<td>-</td>
<td>75±16.68b</td>
<td>10.50b</td>
<td>2.16b</td>
<td>5.75a</td>
<td></td>
</tr>
</tbody>
</table>

Means followed by the same letters in each column are not significantly different at 5% probability level using LSD test.

MS: Active coal, **AN:** 100mgL-1 Citric acid+150mgL-1 Ascorbic acid

با توجه به نتیجه‌ها می‌توان محیط برای استقرار ریزی‌مایه‌های تهیه شده از دانه‌های حاصل از کشت شرود کم‌تعداد در بخش مطالعه Li و همکاران (19) نیز در استقرار جوانه‌های گو نه‌ای وحشی پسته بیشترین جوانه‌مایی در محیط DKW و همکاران (3) محیط کشت را می‌دانستند. در حالت که برای جوانه‌های پسته ترکیب‌های می‌بیوهایی و نحوه استقرار ریزی‌مایه‌ها، برونی‌سیستم‌ها به صورت کامل PKW در بخش ترکیب‌های بیشترین شماره فعالیت شرودی داشتند. برای محیط DKW 2/3 استقرار ریزی‌مایه‌ها نسبت به محیط PKW نتایی از این است که هرگز غلظت نمک در محیط کشت می‌شود که شرودیت فعال تمامی محیط کشت امکان جذب آب و ماده‌های غذایی برای ریزی‌مایه فراهم و بدنی ترکیب حالت شادابی ریزی‌مایه حفظ می‌شود و این راه به رشد آن‌ها کمک می‌کند.
مرحله برآوری نوساشفه‌ها

بر اساس نتیجه‌های بدست‌آمده از تجزیه و ارائه‌داده‌ها در مرحله برآوری نوساشفه‌ها اختلاف معنی‌داری بین میکوهای کشت وجود داشت و همچنین غلظت BA اثر معنی‌داری بر شمار نوساشفه در ریزپونه نسبت به شمار گرم در هر نوساشفه داشت. افزون برای که به‌هم‌کنش سی جایی میکوهای کشت و غلظت تنظیم کننده‌های رشد GA و BA و شاعر گرم در دو گروه کشت DKW و MS پیوسته در دو گروه کشت DKW و MS پیوسته در ۳/۱۰ میلی‌گرم در لیتر BA و ۰/۰۵ میلی‌گرم در لیتر NAA

عکس‌ها:

Fig. 1. The establishment of buds on the ½ DKW medium (A), proliferation in the DKW culture medium supplemented with 1 mg L⁻¹ BA and 0.2 mg L⁻¹ GA (B), and rooting in the ½ MS medium containing 2 mg L⁻¹ IBA and 0.05 mg L⁻¹ NAA (C).
جدول 2. تأثیر ترکیب میانه و مقدار مختلف BA و GA بر رشد و حفاظت اکسپلانت‌های نوزادی در مرحله پراوری در میکروسکوپی 'Badami-riz Zarand'.

<table>
<thead>
<tr>
<th>ترکیب میانه</th>
<th>BA (mgL⁻¹)</th>
<th>GA (mgL⁻¹)</th>
<th>تعداد اکسپلانت‌های نوزادی</th>
<th>طول اکسپلانت (cm)</th>
<th>تعداد اکسپلانت‌های نوزادی در هر اکسپلانت</th>
<th>تعداد برگ در هر اکسپلانت</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKW</td>
<td>0.5</td>
<td>0</td>
<td>2.00ef</td>
<td>0.52d-f</td>
<td>2.50a-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.50de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>5.00a-b</td>
<td>1.52b</td>
<td>4.13b-c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>3.60ed</td>
<td></td>
<td>1.30bc</td>
<td>3.31cd-f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>4.30bc</td>
<td>0.68d-f</td>
<td>2.44b-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>5.00ab</td>
<td></td>
<td>1.00c-f</td>
<td>3.49c-f</td>
<td></td>
</tr>
<tr>
<td>1/2 DKW</td>
<td>0.5</td>
<td>0</td>
<td>5.50a-b</td>
<td>0.58d-f</td>
<td>2.98e-f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.66de</td>
<td></td>
<td>0.63d-f</td>
<td>2.55b-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2.50de</td>
<td>0.47ef</td>
<td>2.00b-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>5.00a-b</td>
<td></td>
<td>0.80c-f</td>
<td>3.68e-f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>1.00f</td>
<td>1.10d-f</td>
<td>3.44f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>6.00a</td>
<td></td>
<td>0.58d-f</td>
<td>2.74h</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>0.5</td>
<td>0</td>
<td>1.75ef</td>
<td>2.33a</td>
<td>4.66b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.00ef</td>
<td></td>
<td>0.57d-f</td>
<td>3.84d-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1.92ef</td>
<td>0.58d-f</td>
<td>3.84d-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.75ef</td>
<td></td>
<td>1.53b</td>
<td>5.00h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>3.00de</td>
<td>0.73c-f</td>
<td>3.92d-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.80f</td>
<td></td>
<td>1.32bc</td>
<td>2.75e-f</td>
<td></td>
</tr>
</tbody>
</table>

middot; پاسخ‌های میانی نوسان می‌کند.

در هر سنو میانی‌های دارای دستکید یک حرف مشابه، تفاوت معنی‌داری با آزمون LSD در سطح احتمال آماری 5 درصد ندارد.

مرحله پراوری

نتایج تجزیه و تحلیل داده‌ها در مرحله ریشه‌زایی نشان داد که بین دو میکوسکوپی DKW و MS تفاوت معنی‌داری نبود. در تعداد اکسپلانت‌های نوزادی، بین دو میکوسکوپی DKW و MS تفاوت معنی‌داری نبود. با توجه به نتایج، DKW بهترین رشد و حفاظت اکسپلانت‌های نوزادی را در مقایسه با MS نشان داد. در نسل بعدی، تعداد برگ در هر اکسپلانت و تعداد اکسپلانت‌های نوزادی در هر اکسپلانت در DKW بیشتر بود. در MS نیز تعداد اکسپلانت‌های نوزادی در هر اکسپلانت و تعداد برگ در هر اکسپلانت بیشتر بود.

از آنجا که میکوسکوپی DKW زیادتر بوده و بیشتر به صورت نمک گفته شده که ترکیب غلطک‌های BA و GA بر رشد و حفاظت اکسپلانت‌ها می‌گردد.

جدول 2. تأثیر ترکیب میانه و مقدار مختلف BA و GA بر رشد و حفاظت اکسپلانت‌های نوزادی در مرحله پراوری در میکروسکوپی 'Badami-riz Zarand'.

<table>
<thead>
<tr>
<th>ترکیب میانه</th>
<th>BA (mgL⁻¹)</th>
<th>GA (mgL⁻¹)</th>
<th>تعداد اکسپلانت‌های نوزادی</th>
<th>طول اکسپلانت (cm)</th>
<th>تعداد اکسپلانت‌های نوزادی در هر اکسپلانت</th>
<th>تعداد برگ در هر اکسپلانت</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKW</td>
<td>0.5</td>
<td>0</td>
<td>2.00ef</td>
<td>0.52d-f</td>
<td>2.50a-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.50de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>5.00a-b</td>
<td>1.52b</td>
<td>4.13b-c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>3.60ed</td>
<td></td>
<td>1.30bc</td>
<td>3.31cd-f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>4.30bc</td>
<td>0.68d-f</td>
<td>2.44b-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>5.00ab</td>
<td></td>
<td>1.00c-f</td>
<td>3.49c-f</td>
<td></td>
</tr>
<tr>
<td>1/2 DKW</td>
<td>0.5</td>
<td>0</td>
<td>5.50a-b</td>
<td>0.58d-f</td>
<td>2.98e-f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.66de</td>
<td></td>
<td>0.63d-f</td>
<td>2.55b-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2.50de</td>
<td>0.47ef</td>
<td>2.00b-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>5.00a-b</td>
<td></td>
<td>0.80c-f</td>
<td>3.68e-f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>1.00f</td>
<td>1.10d-f</td>
<td>3.44f</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>6.00a</td>
<td></td>
<td>0.58d-f</td>
<td>2.74h</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>0.5</td>
<td>0</td>
<td>1.75ef</td>
<td>2.33a</td>
<td>4.66b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.00ef</td>
<td></td>
<td>0.57d-f</td>
<td>3.84d-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1.92ef</td>
<td>0.58d-f</td>
<td>3.84d-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.75ef</td>
<td></td>
<td>1.53b</td>
<td>5.00h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>3.00de</td>
<td>0.73c-f</td>
<td>3.92d-h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.80f</td>
<td></td>
<td>1.32bc</td>
<td>2.75e-f</td>
<td></td>
</tr>
</tbody>
</table>

Means followed by the same letters in each column are not significantly different at 5% probability level using LSD test.
جدول 3- برهمکشی نوع محیط کشت و ترکیب هورمونی بر روی رشد و اکسپرسیون موردن بریسی در مرحله ریشه‌زا

<table>
<thead>
<tr>
<th>Culture medium</th>
<th>Growth regulators composition (mgL⁻¹)</th>
<th>Rooting percentage</th>
<th>Root length</th>
<th>Root number/Explant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3 MS</td>
<td>1 IBA + 0.05 NAA</td>
<td>31.27±26.1b</td>
<td>1.75b</td>
<td>2.00b</td>
</tr>
<tr>
<td></td>
<td>1 IBA + 0.02 NAA</td>
<td>13.33±18.5b</td>
<td>1.25b</td>
<td>1.00c</td>
</tr>
<tr>
<td></td>
<td>2 IBA + 0.05 NAA</td>
<td>44.44±27.1ab</td>
<td>1.03b</td>
<td>1.60bc</td>
</tr>
<tr>
<td></td>
<td>2 IBA + 0.02 NAA</td>
<td>52.3±27.1ab</td>
<td>1.43b</td>
<td>1.80bc</td>
</tr>
<tr>
<td>1/2 MS</td>
<td>1 IBA + 0.05 NAA</td>
<td>37.50±26.1b</td>
<td>0.97b</td>
<td>1.00c</td>
</tr>
<tr>
<td></td>
<td>1 IBA + 0.02 NAA</td>
<td>13.33±18.5b</td>
<td>1.00b</td>
<td>1.00c</td>
</tr>
<tr>
<td></td>
<td>2 IBA + 0.05 NAA</td>
<td>86.36±19.1b</td>
<td>4.48b</td>
<td>4.50c</td>
</tr>
<tr>
<td></td>
<td>2 IBA + 0.02 NAA</td>
<td>52.63±27.1ab</td>
<td>1.87b</td>
<td>1.25c</td>
</tr>
</tbody>
</table>

Means followed by the same letters in each column are not significantly different at 5% probability level using LSD test.

References

1. اسماعیلی، ع. 1376. بررسی اثرات پایه و پیوندهای بر روی رشد و اکسپرسیون موردن بریسی در ستایه‌ریشه‌زایی. تجلیل ع. 14:40 - 04:30 on Saturday May 16th 2020

Optimizing in vitro Culture of *Pistacia vera* ‘Badami-Riz-Zarand’ Using Axillary Buds

Z. Bahramnezhad, A. A. Mohammadi Mirik*, H. Dashti, H. R. Karimi and A. Tajabadipour

Pistacia vera ‘Badami-Riz-Zarand’ is used as rootstock in Iranian pistachio orchards due to the low sensitivity to the *Phytophthora*, resistance to salinity, and graft compatibility with commercial cultivars. In this study, the effects of culture media (MS and DKW) along with type and concentration of plant growth regulators were investigated on micropropagation of this rootstock. The highest growth of explants was obtained in ½ DKW culture media. Supplementing the culture media with antioxidants and activated charcoal has no significant effect on explants establishment. Most of the microshoots (5 to 6 microshoot in each explant) were induced on DKW+1 mg L\(^{-1}\) BA, DKW+2 mg L\(^{-1}\) BA + 0.5 mg L\(^{-1}\) GA, and also on ½ DKW culture media supplemented with 0.5 mg L\(^{-1}\) BA or combination of 1 or 2 mg L\(^{-1}\) BA + 0.5 mg L\(^{-1}\) GA, whereas, the length of the microshoots were higher in MS medium (3.84 to 5 cm). At rooting stage, half strength MS media supplemented with 2 mg L\(^{-1}\) IBA and 0.05 mg L\(^{-1}\) NAA showed the highest root length (4.48 cm), number of roots per microshoot (4.5), and rooting frequency (86.36%).

Keywords: Pistachio, Micropropagation, Plant Growth Regulators, Proliferation, Establishment.

1. M.Sc. Student of Plant Breeding, Assistant Professor and Professor, Department of Genetics and Crop Production, Professor, Department of Horticultural Science, Vali-e-Asr University of Rafsanjan, Faculty member, Pistachio Research Center, Horticultural Sciences Research Institute, Education and Extension Organization, Rafsanjan, Iran, respectively.

* Corresponding author, Email: (aa.mohammadi@vru.ac.ir).